M1. (a) (i) enthalpy (or heat or heat energy) change when 1 mol of a substance (1) (QL mark) is formed from its elements (1) all substances in their standard states (1) (or normal states at 298K, 100 kPa or std condits) not STP, NTP
(b) enthalpy change (or enthalpy of reaction) is independent of route (1)
$\Delta H=\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\Theta}$ prods $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\ominus}$ reactants (or cycle) (1) minimum correct cycle is:

$$
\Delta H=-642-286-(-602+2 \times-92)(1)
$$

$$
=-142\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1)
$$

penalise this mark for wrong units
+142 scores 1 mark out of the last three
(c) $\quad \Delta \mathrm{H}=m c T$ (1) (or $m c \Delta T$)
$=50 \times 4.2 \times 32=6720 \mathrm{~J}=6.72 \mathrm{~J}(1)$
mark is for 6720 J or 6.72 kJ
moles $\mathrm{HCl}=\frac{\mathrm{vol}}{1000} \times$ conc $=\frac{50}{1000} \times 3(\mathbf{1})$
$=0.15$ (1)
if error here mark on conseq.
Therefore moles of MgO reacted $=$ moles $\mathrm{HCl} / 2$ (1)
(mark is for/2, CE if not/2)
$=0.15 / 2=0.075$
Therefore $\Delta H=6.72 / 0.075$ (1)
$=-90 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right)$
kJ must be given, allow 89 to 91
value (1)
sign (1); this mark can be given despite CE for $/ 2$

Note various combinations of answers to part (c) score as follows:

$$
\begin{aligned}
& -89 \text { to }-91 \mathrm{~kJ}(8) \text { (or }-89000 \text { to } 91000 \mathrm{~J}) \\
& \text { no units (7) } \\
& +89 \text { to }+91 \mathrm{~kJ}(7) \text { (or }+89000 \text { to }+91000 \mathrm{~J} \text {) } \\
& \text { no units (6) } \\
& -44 \text { to }-46 \mathrm{~kJ} \text { (5) (or }-44000 \text { to }-46000 \mathrm{~J} \text {) } \\
& \text { no units (4) if units after } 6.72 \text { or } 6720 \text { (5) } \\
& +44 \text { to }+46 \mathrm{~kJ} \mathrm{(4)} \mathrm{(or}+44000 \text { to }+46000 \text {) } \\
& \text { if no units and } \\
& \text { if no units after } 6.72 \text { or } 6720 \text { (3) } \\
& \text { otherwise check, could be (4) }
\end{aligned}
$$

(1) $=0.0250(1)$
allow 0.025
allow conseq on wrong M,
1.45/100, CE; $\frac{1.45}{58.1}$ C.E.
(ii) heat released $=\mathrm{mc} \Delta \mathrm{T}$
$=100 \times 4.18 \times 58.1(1)$
if 1.45 used in place of $100 \mathrm{CE}=0$
$=24300 \mathrm{~J}$ (1) (or 24.3 kJ)
allow 24200 to 24300
ignore decimal places
units tied to answer
If use $0.1 \times 4.18 \times 51.8$ allow $1 / 2$ for 24.3 with no units

(iii) $\frac{24.3}{0.0250}=-972\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$
 allow -968 to -973
 allow +972
 allow conseq allow no units penalise wrong units

(c) (i) Heat loss (1) or energy loss
do not allow incomplete combustion
(ii) Difference: more negative (1) (or more exothermic)

QoL mark
Explanation: heat (or energy) released when water vapour condenses (1) or heat/energy required to vaporise water or water molecules have more energy in the gaseous state
(d) $\Delta \mathrm{H}=\Sigma \Delta H_{\text {reatans }}-\Sigma \Delta H_{\text {products }}$ (1)

$$
\begin{aligned}
& =(2 \times-394)+(3 \times-286)+(-297)-(-1170) \\
& =-773(1) \\
& \quad \text { ignore units even if wrong } \\
& \quad \text { Allow } 1 / 3 \text { for }+773
\end{aligned}
$$

M3.(a) $\quad 2 \mathrm{AgNO}_{3}+\mathrm{Zn} \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$ (1)
Accept an ionic equation i.e. $2 A g^{+}+Z n \rightarrow 2 A g+Z n^{2+}$
(b) Moles $=m v / 1000(1)=0.20 \times 50 / 1000=1.00 \times 10^{-2}$
(c) Heat energy change $=\mathrm{mC} \Delta \mathrm{T}(1)=50 \times 418 \times 3.2 \mathrm{~J}$

$$
=669 \mathrm{~J} \text { (lgnore signs) (1) }
$$

Allow 668, $67.0 \quad 0.67 \mathrm{~kJ}$
Penalise wrong units if given
(d) $\frac{2 \times 669}{1 \times 10^{-2}}=134 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Mark one : $2 \times$ (answer to (c))
Mark two : Dividing by answers to (b)
Allow 133-134
Penalise incorrect units
Mark conseq to equation in (a) for full marks, also to that in (c)

If No working is shown and answer is incorrect zero
(e) Incomplete reaction or Heat loss (1)

$$
1
$$

